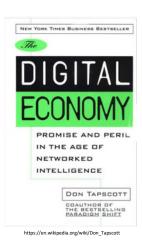

```
>+<]>++.[---
>+<]>+..[++>-
--<1>---[-
>++++<]>-
.+.----.+++.--
----.[---
>+<]>---.+[--
-->+<]>+++.--
-[->++++<]>-
.+.+[-
>+++<]>++.--
[--->+<]>---
.++.[----
                                            > Once Upon a
>+<]>++.---
[->++++<]>-.-
-->+<]>.+[-
                                                    Time...
>+++<]>.---
```

> Need for trust

 The value exchange is possible then trust is present



3

Digital Economy

- 1997 Don Tapscott **DIGITAL ECONOMY** (The Age of Networked Intelligence)
- Web 2.0: **DIGITIZED INTANGIBLE GOODS**(Digitized intangible goods, Zero marginal cost intangible goods)
- 2006 Don Tapscott Wikinomics
 (How Mass Collaboration Changes Everything)

5

> When has it started??

Bitcoin (\beta) - a decentralized digital currency, without a central bank or single administrator, that can be sent from user to user on the peer-to-peer bitcoin network without the need for intermediaries.

Invented in 2008 by an unknown person or group of people using the name **Satoshi Nakamoto**.

ASYMMETRIC CRYPTOGRAPHY – 50-year-old technology (invented in 1970-1973)

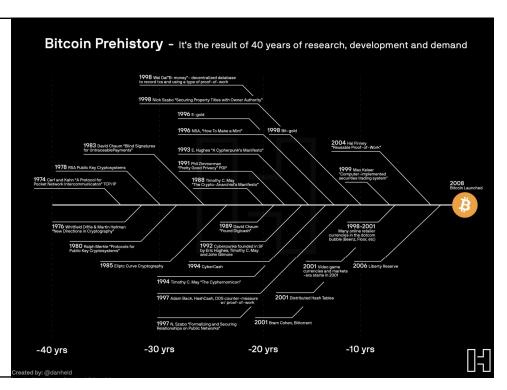
NETWORK INFRASTRUCTURE – ICT and cyber security

BLOCKCHAIN - distributed ledger data structure

2008 - 2009 Financial crisis led by Institutional Banks

Crypto Economy

CRYPTO ECONOMY – economy based on cryptographical and decentralized infrastructures


- 2016 Don Tapscott **BLOCKCHAIN REVOLUTION**
- TRUST PROTOCOL, social, virtual commerce
- Decentralised autonomous organisations (DAO)
- Self-sovereign Digital Identity
- Web 3.0: **TOKENISED ASSETS** (goods)

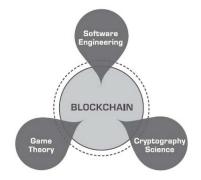
https://en.wikipedia.org/wiki/Don Tapscott

7

> Where are we heading?

Web 1.0	Web 2.0	Web 3.0
Read-only web	Read-write web	Read-write-execute web
The first stage of the internet	The second stage of the internet	The third stage of the internet
The purpose is information sharing	It is about interaction	It aims at immersion
The content was owned	Shared content	Content will be collectively owned and shared
More of a simple and passive web	More of a social Web	It is a semantic web
Focuses on connecting information	Focuses on connecting people	Revolves around connecting knowledge
Static websites	Introduction of web applications	Web-based intelligent functionalities and applications
No or little interaction between server and user	Better interaction between server and user	Designed to deliver a personalized web experience to the users
Technologies related to Web 1.0 include Web and File Servers, HTML, and Portals	Associated technologies include Ajax, JavaScript, CSS, and HTML5	Technologies related to Web 3.0 include Blockchain, Al, decentralized protocols

9


The technological revolution

• Block contains:

- 1. Data (transactions, smart-contracts, etc.)
- 2. Previous block hash
- 3. Block hash

Chain features:

- 1. Consensus mechanism (PoW, PoS, etc.)
- 2. Incentives Rewards to miners/validators
- 3. Block time Difficulty (10 min., 2 min, etc.)

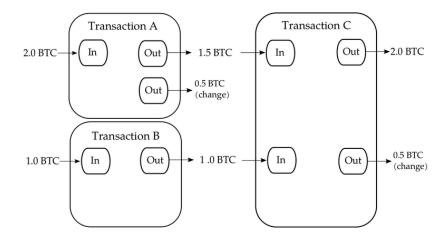
Game theory is 'the study of mathematical models of conflict and cooperation between intelligent rational decision-makers."

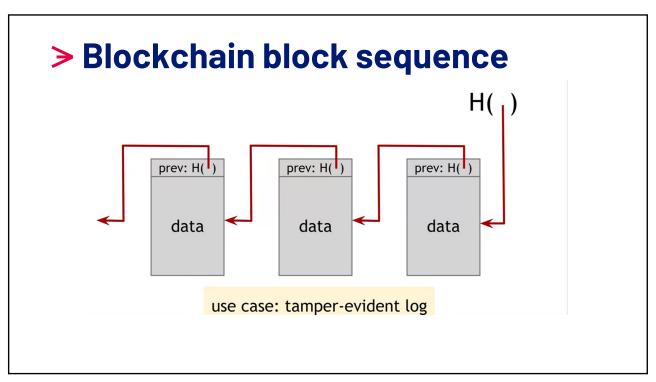
https://andersbrownworth.com/blockchain/hash

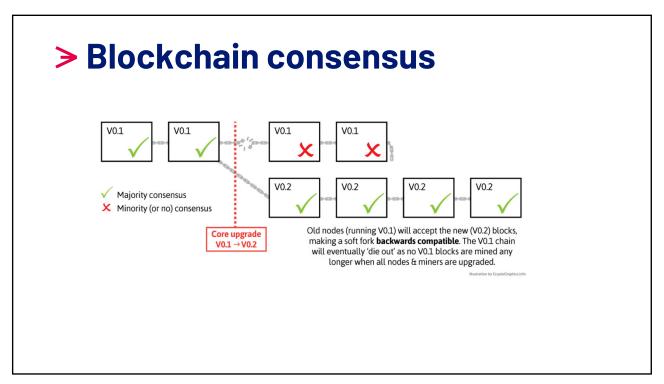
> Token

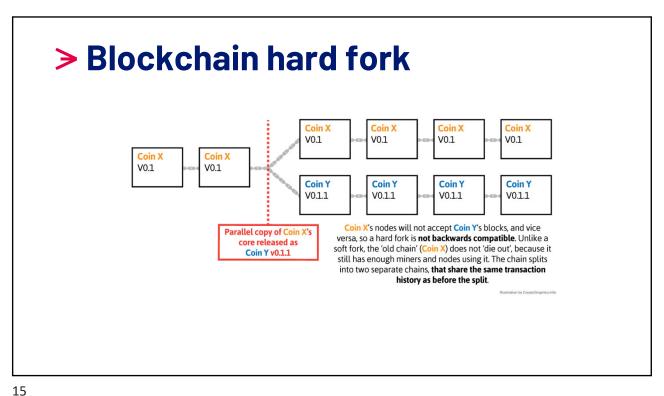
A token is an IOU

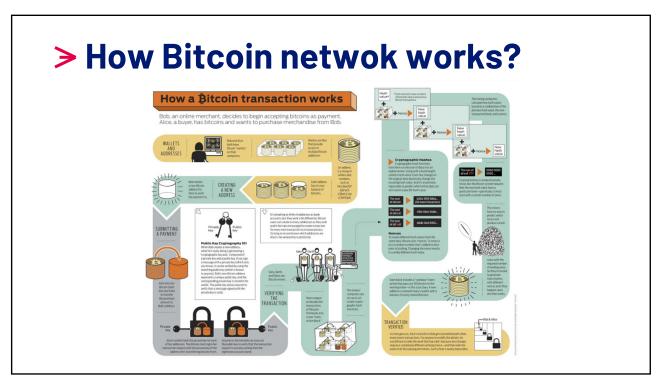
- A poker chip, concert ticket, stock certificate, bond, coat-check token,
- Dinner reservation, driver's license, passport, airline ticket, etc.




A dollar bill is a token, but a dollar is not A digital token: 1HieAFgpQdrVLN8GPFMfG8yMcDxDsrXiLN




11


> Blockchain Transaction - UTX0

> How secure is Bitcoin wallet?

3.1 Public/Private Key Pair

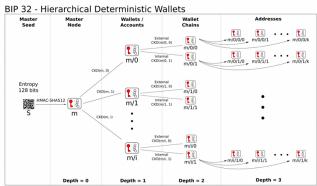
A private key is a random 256-bit integer k. To derive the public key $\underline{\Lambda}$ from it, the following steps are taken:

$$H(k) = (h_0, h_1, \dots, h_{511})$$
 (1)

$$a = 2^{254} + \sum_{3 \le i \le 253} 2^i h_i \tag{2}$$

$$A = aB \tag{3}$$

Since A is a group element, it can be encoded into a 256-bit integer $\underline{A},$ which serves as the public key.


• How secure is SHA256:

• https://www.youtube.com/watch?v=S9JGmA5_unY&t=2s

17

> HD wallet

- HD Hierarchical Deterministic
- https://medium.com/@harshagoli/hd-wallets-explained-fromhigh-level-to-nuts-and-bolts-9a41545f5b0

Child Key Derivation Function $\sim CKD(x,n) = HMAC-SHA512(x_{Chain}, x_{PubKey}||n)$

Wallets, Explorers and other | Symbol | Superior | Sup

19

> Some interaction

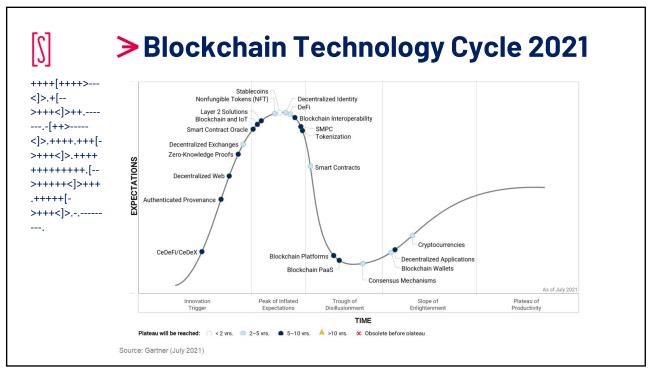
- https://brainwalletx.github.io/
- Bitcoin paper wallet
 - Be aware of scammers!!!
- https://www.blockchain.com/
- Bitcoin genesis block
 - https://www.blockchain.com/btc/block/00000000019d6689c085 ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
- https://bitcoincore.org/

> Some interaction

- Blockchain block & mempool situation
 - https://mempool.space/
- Address generation
 - https://iancoleman.io/

21

Sender Contract 0x80B784B7eD66730e8b1DBd9820aFD29931aab03 © ## Trian Contract | Contract 0x80B784B7eD66730e8b1DBd9820aFD29931aab03 © ## Trian Contract 0x80B7eD6730e8b1DBd9820aFD29931aab03 © ## Trian Con


Ethereum

- Ethereum blockchain statistics
 - https://ethstats.net/
- Ethereum zero address

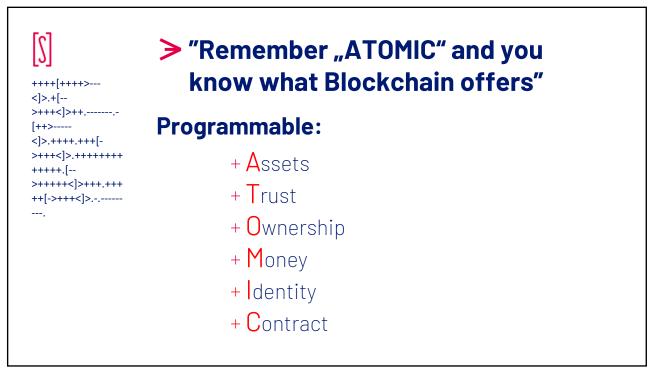
23

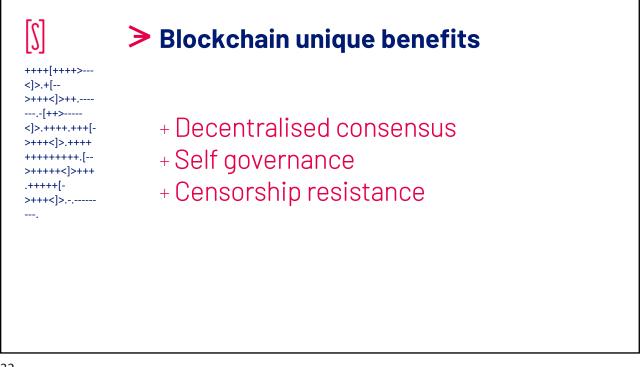
Ethereum wallet address Generate Private Key YCIAjPU6k5HTTH5yO8MqnPngA1dSVwxm SHA256 1216f219480631acc184622c2912a18a36610e61c087c914b165e6e99d1ec8d6 Generate Public Key k_{pub} = 1216f219480631acc184622c2912a18a36610e61c087c914b165e6e99d1ec8d6 2. Multiply the private key by the elliptic curve generator point to get the public key. The public key is a point on the x = 65e804682a16c147820ae79b6f764d671460f6a51293d3790bc7f3b0d5bc2edf elliptic curve and has x and y coordinates. 65e804682a16c147820ae79b6f764d671460f6a51293d3790bc7f3b0d5 36f076fc53b6e30b0bc4c7059b70a831c3c948453b9bfac68f7154l 3. Concatenate the x and y coordinates of Keccak256 the public key, and ccompute a 48419b6f53b3be18c11d2a06<mark>08bbe40c7fe2ff78ab07ab11b0b0db9af76022d8</mark> Keccak256 hash. 4. Take the last 20 bytes, add "0x" to 0x08bBE40c7fE2Ff78AB07AB11B0B0dB9Af76022d8 the front, and you have an Ethereum address:)

```
>++<]>,+.+++++++.+[
---->+<]>++.-[---
>++<]>-
.+++++++++.[----
>+<]>+++.-[--->++<]>-
>+<]>+++.++[-
>+++<]>+.--.[--->+<]>-
---.-[----
>++<]>,----
.+++++++++++.
>++<]>,-----.+[---
                                        > Point Of No
-->+<]>,-----
.++++++++++++--[-
>++++<]>.
                                              Return...
```


> Key adoption drivers

- Mainstream adoption of Bitcoin, including El Salvador's adoption of Bitcoin as legal tender in June 2021 and Central African Republic in April 2022
- Payment network, banking and social network adoption of distributed ledger technologies (DLTs) for money
 movement, with the expected deployment of central bank digital currencies (CBDCs) being a key influencer.
- **Decentralized finance (DeFi)** applications offer substantially greater financial rewards than traditional finance. Centralized firms like hedge funds already take advantage of this.
- Tokenization of assets, including **explosive growth of NFTs and DeFi tokens**, and the promise of tokens linked to physical assets in the future.
- Blockchains such as Binance, Polygon, Avalanche and Solana offering viable cost-effective alternatives to Ethereum chain transactions.
- Monumental **progress in blockchain interoperability**, including gateways and abstraction middleware, already used today by DeFi applications.
- Blockchain migration from the proof-of-work (POW) consensus method (still used for Bitcoin) to more
 energy-efficient consensus methods such as proof of stake (PoS). The ongoing upgrade of Ethereum leads
 this trend.


27



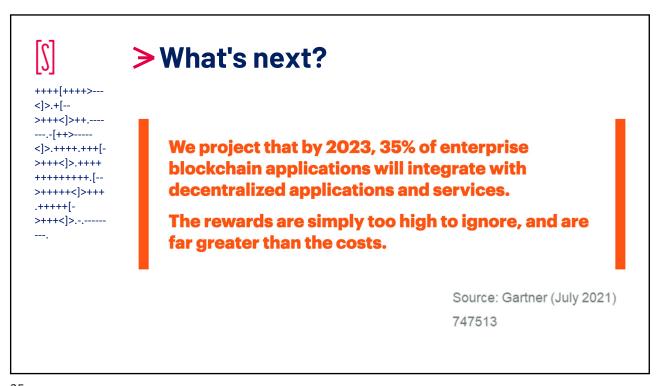
Still existing challenges

- Adoption of permissioned blockchains and DLTs is moving much more slowly. Some use cases — especially around supply chain and authenticated provenance — are benefiting from ledger technology. However, most users are stuck trying to align use cases to the technology.
- Lack of global regulations and accounting standards for most enterprises to adopt cryptocurrency.
- User experience and interfaces in most of DeFi applications are not designed for ordinary user

Blockchain Myths

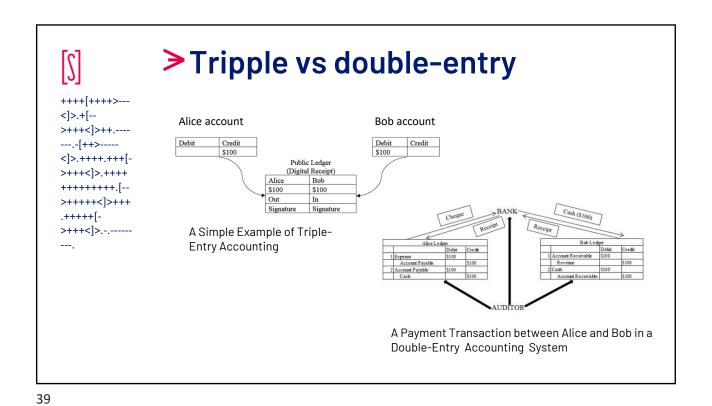


- + Cryptocurrencies and Blockchain is harmful for Ecology
- + Blockchain and Cryptocurrencies are used only by Tech-anarchists and Marginals
- + Cryptocurrencies are best for money laundering and terrorist financing
- + Tokens and Cryptocurrencies are stored in Wallets
- + Where is underlying value of Cryptocurrencies?


33


Few Tips and Tricks

- + You need to think "decentralised" and sometimes totally reshape the business model
- + Tokenonomics consists of two words Token and Economy
- + Sometimes you will need to sacrifice something to achieve "greater good"
- + Not all business models need blockchain



Systhemical decentralisation

- DATA MANIPULATION (Cambridge Analytica, Facebook, etc.)
- Trust issues (Governments, Politics, Inequality, etc.)
- Data misuse & Loss (Banks, Google, Clinical trials, etc.)
- SINGLE POINT OF FAILURE (central data bases, registers, etc.)
- **DIGITAL IDENTITY** (SIM Swapping, identification problems, KYC, etc.)
- **TECHNOLOGICAL PROGRESS** (decentralised consensus, trustless protocols, decentralised applications, etc.)

➤ Merkle Tree

Merkle Hash = H_{Root}
H(H_{ABCD}, H_{EE2})

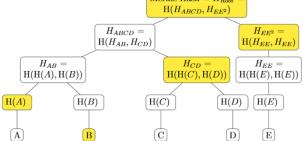
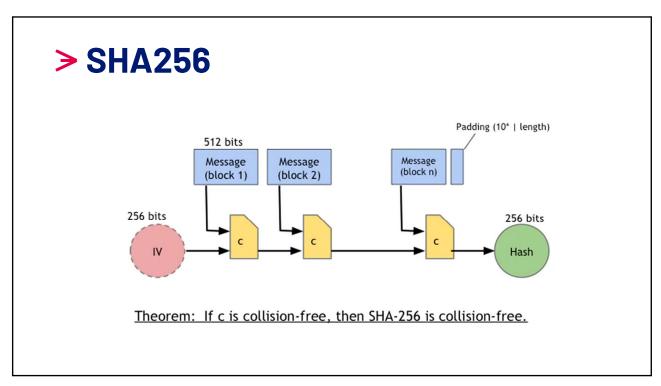



Figure 2: Merkle proof required for proving existence of B in the tree

