
Refactoring with Sandwich Pattern

1

Context

2

This Talk is inspired by

VLADIMIR KHORIKOV

@vkhorikov

GABRIELE TONDI

@racingDeveloper
3

About us

HADI AHMADI

@HAhmadi15

SEPEHR NAMDAR

@SepNamdar @DDD_Iran
4

Problem

● A Legacy Code
● Without Test
● Procedural
● With Anemic Domain Objects
● Add Some New Features

5

Goal

● A Domain Centric Code
● With Rich Domain Objects
● With Tests

6

Where to start ?

This slide is intentionally left blank

7

First of all : Learn the Domain

As a Human Resource

I want to find an available Recruiter

According to my Candidate Availabilities

“Who can test”* my Candidate.

8

Then : Ask questions

9

First of all : Learn the Domain

As a Human Resource

I want to find an available Recruiter

According to my Candidate Availabilities

“Who can test”* my Candidate.

Who can test : The Recruiter should cover all Candidate’s Skills.

10

Let’s have a look !

11

https://github.com/SepehrNamdar/sandwich-driven-development/

https://github.com/H-Ahmadi/DDDEU21_Sandwich_Driven_Development

https://github.com/SepehrNamdar/sandwich-driven-development/
https://github.com/H-Ahmadi/DDDEU21_Sandwich_Driven_Development

Step 1 : Protect your code with tests

Refactoring is changing the code structure without changing its
behaviour

Bad Practice: Start Refactoring without a test coverage 12

Writing tests is too long and boring

13

Step 1 : Protect your code with Approval Tests

● Advantages:
○ Fast to write
○ Easy to learn
○ Multi Platform
○ Compact
○ Based on Golden Master

● Disadvantages:
○ Not enough by itself

14

Step 2 : Apply the Sandwich Pattern

Shared States
Immutable
Domain

15

Step 3 : Make your Domain Model Rich

16

Step 4 : A new Business Rule

Recruiter Availabilities must be booked before plan the Interview

17

2 solutions for this Temporal Coupling

1. Use your tests (Best solution):

private RecruiterRepository recruiters = Mockito.mock(RecruiterRepository.class);
private InterviewRepository interviews = Mockito.mock(InterviewRepository .class);
InOrder inOrder = Mockito.inOrder(recruiters, interviews);
inOrder.verify(recruiters).bookAvailability(recruiter, interviewDate);
inOrder.verify(interviews).save(interview);

2. Force your method to return a value (Our choice):

Recruiter recruiter = recruiters.bookAvailability(appropriateRecruiter , availability);

18

The second solution !

19

Domain Model Purity

● Domain layer does not depend on any external resource or
framework

● Its objects know only about primitive or other domain objects

20

Step 5 : A Pure Domain Model

Use a Domain Service !

Domain Model

Pure part of Domain Model

21

Did that really helped ?

22

Domain Model Completeness

● Domain layer contains all business rules and Domain Logic

23

Step 6 : Domain Model Completeness

Gather all Business Rules into Domain Layer !

24

What Could Possibly Go Wrong ?

25

Conclusion

● You can never have a Domain Model which is absolutely Efficient,
Complete and Pure !

26

Conclusion

● Sandwich Pattern helps you to make your Domain Model Pure
and Complete

27

Conclusion

● Sandwich Pattern is not the most Efficient

28

Questions ?

29@SepNamdar @DDD_Iran @HAhmadi15

30@SepNamdar @DDD_Iran @HAhmadi15

ممنون

Resources
- https://enterprisecraftsmanship.com/posts/domain-model-purity-lazy-loading/
- https://enterprisecraftsmanship.com/posts/domain-vs-application-services/
- https://enterprisecraftsmanship.com/posts/temporal-coupling-and-immutability/
- https://vimeo.com/107963074
- https://fr.slideshare.net/JAXLondon2014/crafted-design-sandro-mancuso
- http://videos.ncrafts.io/video/221024483

31

https://enterprisecraftsmanship.com/posts/domain-model-purity-lazy-loading/
https://enterprisecraftsmanship.com/posts/domain-vs-application-services/
https://enterprisecraftsmanship.com/posts/temporal-coupling-and-immutability/
https://vimeo.com/107963074
https://fr.slideshare.net/JAXLondon2014/crafted-design-sandro-mancuso
http://videos.ncrafts.io/video/221024483

